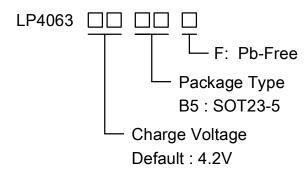


800mA Single Chip Li-Ion and Li-Polymer Charger

General Description

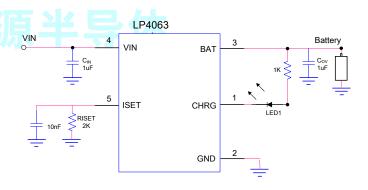

The LP4063 is a complete constant-current/ constant voltage linear charger for single cell lithium-ion battery. Its SOT23-5 package and low external component count make the LP4063 ideally suited for portable applications. No external sense resistor is needed, and no blocking diode is required due to the internal MOSFET architecture. Thermal feedback regulates the charge current to limit the die temperature during high power operation or high ambient temperature. The charge voltage is fixed at 4.2V, and the charge current can be ISET programmed externally with a single resistor.

The LP4063 automatically terminates the charge cycle when the charge current drops to 1/10 setting current value after the final float voltage is reached.

When the input supply is removed, the LP4063 automatically enters a low current state, dropping the battery drain current to less than < 1µA.

Other features include charge current monitor, under voltage lockout, automatic recharge and a status pin.

Order Information


Applications

- ♦ Portable Media Players/Game
- ♦ Power Bank
- ♦ Bluetooth Applications
- ♦ PDA/MID

Features

- Input Voltage up to 28V
- ◆ Input Over Voltage Protection: 7V
- Short-circuit protection
- Programmable Charge Current :300mA to 800mA
- ◆ < 1µA Battery Reverse Current
 </p>
- Protection of Reverse Connection of Battery
- No MOSFET, Sense Resistor or Blocking Diode Required
- Constant-Current/Constant-Voltage Operation with Thermal Regulation to Maximize Charge Rate Without Risk of Overheating
- ♦ SOT23-5 Package
- ◆ RoHS Compliant and 100% Lead (Pb)-Free

Typical Application Circuit

Marking Information

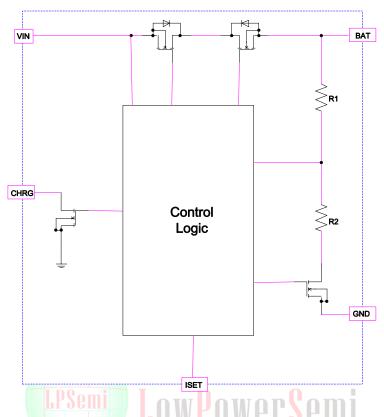
Device	Marking	Package	Shipping		
LP4063B5F	LP4063 BHYWX	SOT23-5	3K/REEL		
Marking indication:					
Y:Production year W:Production week X: Series Number					

LP4063-02

Functional Pin Description

Package Type	Pin Configurations	
	CHRG 1 5 ISET	
SOT23-5	BAT 3 4 VIN	
	SOT23-5 TOP VIEW	

Pin Description


No.	NAME	DESCRIPTION
		Open-Drain Charge Status Output. When the battery is charging, the CHRG pin is pulled low
1	CHRG	by an internal NMOS. When the charge cycle is completed, the pin could be pulled High by an
		external pull high resistor.
2	GND	GND is the connection to system ground.
		BAT is the connection to the battery. Typically a 10µF Tantalum capacitor is needed for
3	BAT	stability when there is no battery attached. When a battery is attached, only a 1uF ceramic
		capacitor is required.
4	VIN	VIN is the input power source. Connect to a wall adapter.
		Charge Current Program. The charge current is programmed by connecting a 1%
5	ISET	resistor(R _{ISET}) to ground.
		$I_{BAT} = \frac{1000 \times V_{ISET}}{R_{ISET}}$

LP4063-02 Sep.-2021

Email: marketing@lowpowersemi.com

Function Block Diagram

Absolute Maximum Ratings

\diamond	Input Voltage to GND	₹V
\diamond	BAT Voltage GND 5V to 7	'V
	Other pin to GND0.3V to 6.5	ίV
	Maximum Junction Temperature 125°	Ċ,
\$	Maximum Soldering Temperature (at leads, 10 sec) 260°	Ò,
	Operating Junction Temperature Range (T _J)	'n.
	Storage Temperature	Ċ.

Thermal Information

\diamond	Maximum Power Dissipation ($P_D,T_A=25^{\circ}C$)	 0.6W

♦ Thermal Resistance (θ_{JA}) ------ 200°C/W

ESD Susceptibility

\diamond	HBM(Human Body Mode)		2KV	,
------------	----------------------	--	-----	---

♦ MM(Machine Mode) ------ 200V

Note 1. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Electrical Characteristics

(T_A=25°C, V_{IN} =5V, unless otherwise noted.)

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP.	MAX	UNITS
Vin	Input Voltage		4.4	5	6.5	V
l _{IN}	Input Supply Current	I _{BAT} =0		1000		uA
V _{FLOAT}	Regulated Output (Float) Voltage	I _{BAT} =40mA,	4.158	4.2	4.242	V
Vuv	VIN Under Voltage Lockout Threshold	From V _{IN} Low to High	3.1	3.3	3.5	٧
V _{UV_HYS}	VIN Under Voltage Lockout Hysteresis			150		mV
Vove	Input Voltage OVP	V _{IN} Rising		7		V
Vovp_HYS	OVP Hysteresis			150		mV
		RISET=2k, Current Mode		500		mA
	DAT D: O	R _{ISET} =3.3k, Current Mode		300		mA
I _{BAT}	BAT Pin Current	V _{BAT} =4.2V		1		
		V _{IN} =float or 0V		1	u <i>A</i>	uA
I _{TRIKL}	Trickle Charge Current	V _{BAT} <v<sub>TRIKL, Current Mode</v<sub>		10		% I _{BAT}
V _{TRIKL}	Trickle Charge Threshold Voltage	V _{BAT} Rising		2.6		V
V _{TRHYS}	Trickle Charge Hysteresis Voltage			150		mV
I _{TERM}	Termination Current Threshold	D 0 1		10		% I _{BAT}
V _{ISET}	ISET Pin Voltage	R _{ISET} =3.3k, Current Mode		1		V
Ichrg	CHRG Pin Weak Pull-Down Current	V _{CHRG} =5V			5	uA
Vchrg	CHRG Pin Output Low Voltage	I _{CHRG} =5mA			0.1	V
ΔV _{RECHRG}	Recharge Battery Threshold Voltage	V _F LOAT-V _{RECHRG}		150		mV
T _{LIM}	Junction Temperature in Constant Temperature Mode			125		°C

Application Information

Input Voltage Range

The LP4063 has built-in input voltage surge protection as high as +28V. The charger IC will be automatically disabled when the input voltage is lower than 3.3V or higher than 7.0V.

A charge cycle begins when the voltage at the VIN pin rises above the 4.4V level, when a battery is connected to the charger output. If the BAT pin is less than 2.6V, the charger enters trickle charge mode. In this mode, the LP4063 supplies approximately 1/10 the ISET programmed charge current to bring the battery voltage up to a safe level for full current charging. When the BAT pin voltage rises above 2.6V, the charger enters constant-current mode(CC), where the ISET programmed charge current is supplied to the battery. When the BAT pin approaches the final float voltage, the LP4063 enters constant-voltage mode(CV) and the charge current begins to decrease, and the battery full indication is set when the charge current in the CV mode is reduced to the programmed full battery current (1/10).

Charge Termination

A charge cycle is terminated when the charge current falls to 1/10th the ISET programmed value after the final float voltage is reached. This condition is detected by using an internal, filtered comparator to monitor the ISET pin. When the ISET pin voltage falls below 100mV for longer than t_{TERM} (typically 1ms), charging is terminated.

ISET programming Charge Current

The charge current (I_{BAT}) is set by a resistor (R_{ISET}) connecting from the ISET pin to GND. The relationship of the charge current and the programming resistance is established by the following equations (V_{ISET} =1V). R_{ISET} resistance value scope for $1.3K\Omega$ — $3.3K\Omega$.

$$I_{BAT} = \frac{1000 \times V_{ISET}}{R_{ISET}}$$

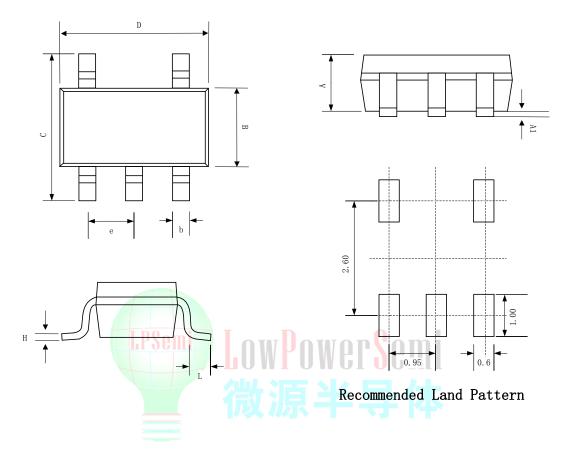
Automatic Recharge

Once the charge cycle is terminated, the LP4063 continuously monitors the voltage on the BAT pin. A charge cycle restarts when the battery voltage falls below 4.05V (which corresponds to approximately 80% to 90% battery capacity). This ensures that the battery is kept at or near a fully charged condition and eliminates the need for periodic charge cycle initiations.

Charge Status Indicator(CHRG)

The charge status output has two different states: strong pull-down (~5mA) and high impedance. The strong pull-down state indicates that the LP4063 is in a charge cycle. High impedance indicates that the charge cycle complete or the LP4063 is in under voltage lockout mode: either insufficient voltage is applied to the VCC pin or VCC pin voltagehigher than OVP.

Function	CHRG
Charging	Low
Charge Finish	High


Thermal Limiting

An internal thermal feedback loop reduces the I_{SET} programmed charge current if the die temperature attempts to rise above a preset value of approximately 125°C. This feature protects the LP4063 from excessive temperature and allows the user to push the limits of the power handling capability of a given circuit board without risk of damaging the LP4063. The charge current can be set according to typical (not worst-case) ambient temperature with the assurance that the charger will automatically reduce the current in worst-case conditions.

Packaging Information

SOT23-5

SYMBOL	Dimensions In Millimeters			
STIVIDOL	MIN	NOM	MAX	
Α	0.889	1.100	1.295	
A1	0.000	0.050	0.152	
В	1.397	1.600	1.803	
b	0.28	0.35	0.559	
С	2.591	2.800	3.000	
D	2.692	2.920	3.120	
е	0.95BSC			
Н	0.080	0.152	0.254	
L	0.300	0.450	0.610	