

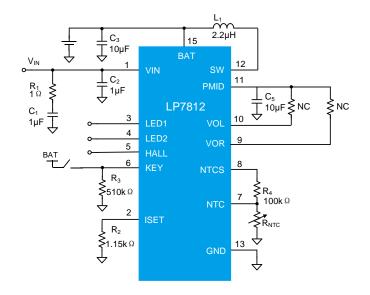
芯片特性

- 输入耐压高达28V
- 电池仓充电管理:
 - 最高支持0.8A的可调线性充电电流
 - 5%充电电流精度
 - 0.5%浮充电压精度
 - 自动复充
- 耳机放电管理
 - 93% 峰值升压效率
 - 高效率电压跟随放电
 - 电池过放保护
 - 单耳充电电流高达150mA
- 温度管理
 - NTC实时监控, 充放电温度管理
 - 120°C电池仓充电电流智能调整
 - 150°C过温保护
- 集成左右耳出入仓检测及自动唤醒充电
- 集成事件主动发码功能
- 集成霍尔及按键检测
- 1~4路LED可选
- 7-μA超低静态功耗
- 3mm X 3mm QFN-16 封装
- RoHS Compliant and 100% Lead (Pb) Free

典型应用

TWS充电仓

描述


LP7812是一款多合一的智能TWS充电仓管理IC,集成电池充电,耳机放电,温度管理,霍尔检测,按键检测以及LED显示等功能。集成的线性充电电路给电池仓充电,同时支持高达28V的输入电压和最大0.8A的充电电流。两路独立的耳机充电电路支持TWS耳机超低压差跟随充电以支持大电流快充,同时显著提升充电仓续航时长。LP7812集成符合JEITA标准的NTC检测电路,在电池过温时强制关闭充放电功能以保证系统安全。LP7812集成芯片结温过温保护,确保芯片安全运行。LP7812典型的静态电流仅为7-μA。

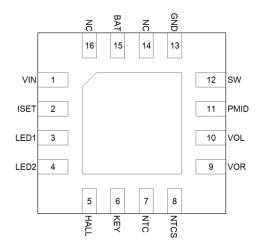
LP7812使用3mm X 3mm QFN-16封装。

采购信息

典型应用电路

器件信息

器件型号	丝印	CV 电压	放电温度范围	封装形式	包装数量	湿敏等级
LP7812QVF	LPS LP7812 YWX	4.2V	-10°C~60°C	16-pin 3 X 3 QFN	5K/包	LEVEL 3


丝印说明: Y: Year code. W: Week code. X: Batch numbers.

湿敏等级:根据 JEDEC 标准定义

引脚说明

LP7812 Pinout

引脚描述

序号	引脚名	描述
1	VIN	USB 输入引脚。建议就近表贴至少1uF去耦电容。
2	ISET	充电电流设置引脚。请根据规格书说明计算对地电阻阻值。
3	LED1	LED1驱动引脚。
4	LED2	LED2驱动引脚。
5	HALL	HALL 检测引脚。低电平关盖,高电平开盖。
6	KEY	复用引脚。
		该引脚不能悬空,必须外接1%精度对地电阻,电阻阻值设定耳机充电电流。
		该引脚复用为KEY引脚,即按键检测,按键高电平有效。
7	NTC	NTC检测引脚。
8	NTCS	NTC偏置电压输出引脚。
9	VOR	右耳输出引脚。
10	VOL	左耳输出引脚。
11	PMID	boost变换器输出引脚。
12	SW	boost变换器开关引脚。
13	GND	boost变换器功率地引脚。
14	NC	悬空或者接地。
15	BAT	线性充电电池引脚。建议就近表贴至少1uF去耦电容。
16	NC	悬空或者接地。
	Thermal	接功率地。
	Pad	

极限值 (Note)

VIN to GND0.3V to 28V	
Others to GND	
SW to GND (5ns)	
芯片结温 (TJ)	
最高焊接温度 (at leads, 10 sec)260℃	
Note: 超过极限值使用,芯片可靠性可能会受到影响。	
ESD等级	
HBM (Human Body Model)4kV	

热阻信息

θ_{JA} (Junction-to-Ambient Thermal Resistance) ------60°C/W

CDM (Charged Device Model) ----- 500V

推荐工作条件

SYMBOL	PARAMETER	MIN	TYP	MAX	UNIT
V_{IN}	输入电压	4		6	V
I _{IN}	输入电流			1	Α
T _A	环境温度范围	-40		85	°C
C _{IN}	输入滤波电容	1			μF
C_{BAT}	BAT引脚滤波电容	10			μF
C _{PMID}	PMID引脚滤波电容	10			μF

电气特性

(除非有特殊说明,所有参数基于以下条件测试: $V_{IN} = 5V, T_{J} = 25$ °C。)

符号	参数	测试条件	最小	典型	最大	单位
输入供电						
V _{INUVLO}	欠压保护电压	VIN 下降沿阈值	3.6	3.8	4.0	V
$V_{\text{INUVLO}_{\text{H}}}$	欠压保护迟滞电压	VIN 上升沿阈值		150		mV
V_{IN_OVP}	过压保护电压	VIN上升沿阈值	6.0	6.2	6.55	V
$V_{OVP_{H}}$	过压保护迟滞电压	VIN下降沿阈值		150		mV
I _{IN}	输入静态电流	VIN=5.0V, BAT=4.3V		150		μΑ
V_{IN_DPM}	输入动态电压调整阈值			4.4		V
电池供电						
V_{BAT_POR}	电池上电复位电压	VIN=0V, BAT 上升沿阈值			2.6	V
$V_{POR_{_}H}$	上电复位迟滞电压	BAT 下降沿阈值		0.18		V

符号	参数	测试条件	最小	典型	最大	单位
I _{BAT}	电池静态电流	待机模式,BAT=3.8V,VIN=0V		7		μΑ
充电管理						•
V_{TRK}	涓流充电阈值	BAT 上升沿阈值	2.75	2.8	2.85	V
V_{TRK_H}	涓流充电迟滞电压			100		mV
I _{TRK}	涓流充电电流	ICC=420mA, RISET=1.15k, 10% ICC	28	42	57	mA
	[—\ -	10°Cto 45°C	378	420	462	mA
ICC	恒流充电电流	25℃	400	420	440	mA
	0-10℃充电电流	ICC=420mA, 50%ICC	185	210	235	mA
V_{CV}	浮充电压	0°C to 60°C	4.18	4.2	4.22	V
$V_{\text{CV_RCH}}$	复充电压	0°C to 60°C		4.05		V
I _{TERM}	充电截止电流	ICC=420mA, 10%ICC	28	42	57	mA
$T_{Thermal}$	充电温度保护阈值	Tj	100	120	140	°C
升压变换器						
R_{ds,on_HS}	上管导通阻抗	PMID=5.1V		350		mΩ
R_{ds,on_LS}	下管导通阻抗	PMID=5.1V		250		mΩ
f_{sw}	开关频率[1]	PMID=5.1V		1.2		MHz
l _{lim}	峰值限流电流	BAT=3.6V		1.3		Α
V_{PMID}	输出电压精度	25℃	5.04	5.1	5.16	V
V_{PMID_SCP}	PMID 短路保护阈值	BAT=3.6V, 相对于BAT		-0.5		٧
NTC Mana	agement					
T ₋₁₀	-10°C检测阈值	温度下降沿	84.0	85.0	86.0	%
I -10	10 巴拉沙则或旧	温度迟滞		2		%
T_0	 0℃检测阈值	温度下降沿	75.5	76.5	77.6	%
10		温度迟滞		2		%
T ₁₀	 10℃检测阈值	温度下降沿	66.0	66.8	67.5	%
110	10 色版例刻值	温度迟滞		2		%
T ₄₅	 45℃检测阈值	温度下降沿	29.0	30.0	31.0	%
1 43	I CHECKIE	温度迟滞		2		%
T ₆₀	 60℃检测阈值	温度下降沿	19.0	20.0	21.0	%
		温度迟滞		2		%
耳机充电管				1	ı	1
EICC	耳机放电限流	RKEY=500k,25°C	90	100	110	mA

email: marketing@lowpowersemi.com

符号	参数	测试条件	最小	典型	最大	单位
R _{ds,on_EAR}	耳机放电管导通阻抗	PMID=5.1V		800		mΩ
EEOC	耳机充电截止检测电流 阈值(EEOC)	PMID=5.1V	3	4	5	mA
t _{dEEOC}	耳机EEOC 消抖 时间 [1]			400		ms
V_{BATUV}	耳机充电欠压保护电压	BAT下降阈值		3.3		V
V_{BATUV_H}		BAT上升阈值		3.5		V
I _{PUP}	耳机待机上拉电流	BAT=3.6V, 25°C	1	2	3	μΑ
V _{INSERT}	耳机入仓检测阈值	VIN浮空, BAT=3.8V,BST_EN=0, 相对于BAT		-0.7		V
t _{dINSERT}	入仓消抖时间[1]			30		ms
LED驱动						_
I_{sink}	LED 下拉驱动能力	BAT=3.8V, VLED=0.4V		-7		mA
I_{source}	LED 上拉驱动能力	BAT=3.8V, VLED=3.4V		7		mA
霍尔及按键						
V_{H}	输入高电平		1.8			V
V_L	输入低电平				0.4	٧
t _{dopen}	开盖消抖时间[1]			30		ms
t _{dclose}	关盖消抖时间[1]			3		S
t _{dkey}	短按键消抖时间[1]			30		ms
t _{dkey3}	3S按键消抖时间[1]			3		S
t _{dkey10}	10S按键消抖时间[1]			10		S

^{[1]:} 非量产测试数据,由设计提供保证。

典型特性曲线

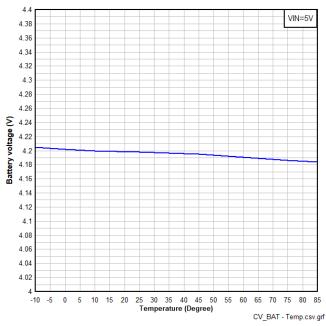


图1. CV 电压 VS. 结温

Trickle Charge Current VS. Battery Voltage

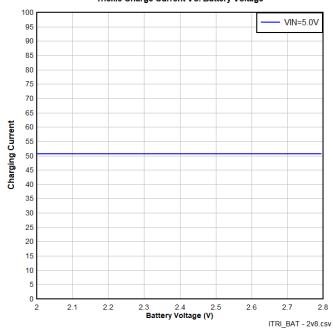


图3. ITRI VS. VBAT

Version: 01/09/2024

Fast Charging Current VS. Battery Voltage VIN=5.0V, ICC=480mA

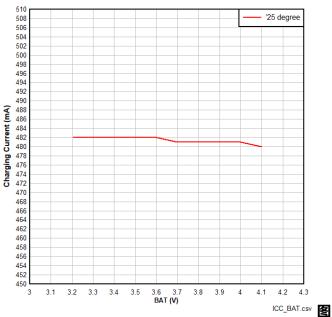


图2. ICC VS. VBAT

图2. ICC V3. VDAI

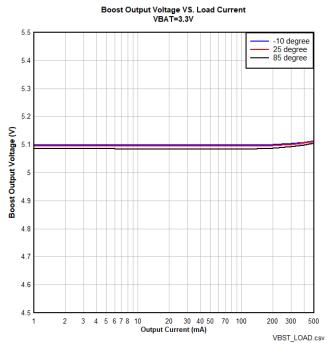
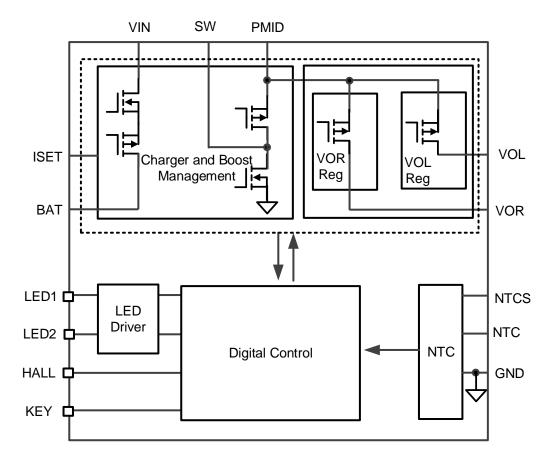



图4. VBST VS. Load Current

功能框图

www.lowpowersemi.com

功能描述

简介

LP7812系列芯片是一款高效率的智能TWS充电仓管理IC,集成了充电、放电、NTC和用户界面功能。当电源连接到VIN引脚时,内部线性充电电路将自动启动为充电仓中的电池充电。放电功能包括一个同步升压电路、两路耳机出入仓检测电路和两路耳机充电管理电路。NTC检测电路检测五个温度阈值,控制电池仓充电功能的开启和关闭。用户界面包含LED灯显、霍尔检测和按键检测。LED1 和LED2引脚可配置成1~4LED不同模式进行显示。HALL和KEY 支持霍尔传感器和按键输入检测,并控制耳机上下电。

LP7812系列芯片支持主动发码功能,在开关盖,按键,电池欠压以及耳机满电时主动发送通信指令给耳机。

输入欠压和过压检测

LP7812实时检测VIN电压,当VIN低于V_{IN_UVLO}或高于过压保护阈值(V_{IN_OVP})时,充电功能将关闭。V_{IN_UVLO}和V_{IN_OVP}的典型迟滞电压均为100 mV。

当输入电压低于VIN OVP阈值但高于VIN UVLO阈值时,充电功能恢复正常。

电池仓充电管理

LP7812片集成一个线性充电电路给电池仓电池充电,LP7812具有三种充电模式,即涓流、恒流 (CC) 和恒压 (CV) 模式。当以下所有条件均有效时,线性充电器开始充电:

- 1) 有效的输入电源(VIN电压高于VIN UVLO但是低于VIN OVP)。
- NTC的范围在0℃至45℃之间。

涓流充电: 涓流充电电压阈值固定为2.8V。当电池电压低于涓流阈值时,LP7812开始涓流充电。涓流充电电流的典型值固定为CC电流的10%。

CC充电: 当电池电压高于涓流阈值但低于CV阈值时,LP7812开始CC充电。CC电流可通过ISET引脚的R_{ISET}的外部电阻设定。充电电流的计算公式如下:

 $ICC=480/R_{ISET}$ (A)

建议的充电电流范围为100mA~800mA。

当温度为0-10°C时,LP7812将充电电流主动降低至50%的设定值进行充电。

CV充电: 当电池电压升至CV阈值时,LP7812开始CV充电。在CV阶段,充电电流逐渐减少,直到电池充满。LP7812 默认的CV电压为4.2V.

充电终止: 当充电电流降至CC电流的10%且电池电压高于V_{CV RCH}时,电池已充满,LP7812关闭充电功能。

充电复充: 电池充满之后,如果USB一直未拔出,当电池电压降至V_{CV_RCH}时,充电功能将自动重新启动,直到再次充满电池为止。

NTC管理: 当NTC电路的温度在10 ℃到45 ℃之间时, LP7812以R_{ISET}电阻设置电流进行CC充电; 当温度在0 ℃-10

°C之间时,CC电流会自动降低到50%ICC,以提高电池寿命。如果温度超出了0°C-45°C范围,充电功能将被强制关闭直到温度恢复正常。

LP7812 支持β=3950的 NTC热阻。阻值可以选择10K 或者100K 。

充电电流热管理:当芯片结温达到120℃时,LP7812将降低充电电流以防止芯片过热,直到达到新的温度平衡。

VIN动态电源管理控制 (DPM): 当输入电源的供电能力不足时, LP7812可以自动调节充电电流以避免输入电源VIN被拉低。当VIN电压降至VIN_DPM阈值 (4.4V典型值) 时, LP7812会开始降低充电电流, 直到VIN电压保持在4.4V。当VIN高于VIN DPM阈值时, 充电电流自动恢复到设定值。

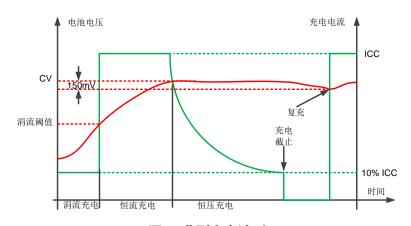


图5. 典型充电波形

升压变换器

LP7812集成一个2-μA超低静态功耗升压变换器。升压变换器处于常开模式直到电池低于3.0V。

升压转换器工作原理:

LP7812集成一路同步升压变换器,支持最大500mA负载电流输出。LP7812采用峰值电流控制方式,工作频率在1.2MHz, 支持PCB电感和普通绕线电感。

LP7812支持直通工作模式和升压工作模式,并根据耳机电池电压自动切换。随着耳机充电电流的降低,LP7812的升压变换器可以自动从PWM模式转换到PFM模式以提升轻载效率。

短路保护:

LP7812检测PMID电压实现短路和过载保护。当PMID发生短路以后,LP7812将关闭升压转换器进入打嗝模式。当20ms打嗝时间结束时,升压变换器将重新启动。

升压电路欠压保护:

当电池电压降低到2.9V时, 升压变换器将强制关闭。当BAT电压恢复到3.0V时,升压变换器重新工作。

耳机充电

LP7812集成独立的左右耳机充电电路,包括耳机入仓检测,耳机充电,耳机满电检测以及耳机短路检测等。并在不同的事件发生时在LED上进行相应的显示。

11 / 24

耳机入仓检测: LP7812通过检测PMID与VOL/VOR引脚电压的压差实现耳机插入检测。在耳机不在仓时,PMID输出2-μA固定电流到VOL/VOR引脚,当VOL/VOR电压低于PMID 1V以上时,LP7812识别到耳机入仓并启动给耳机充电,与此同时LED灯显示一次。

耳机充电: LP7812检测到左耳(或者右耳插入后),将开启相应耳机的控制电路给耳机充电。充电过程中, LP7812将输出一个高精度电流源给耳机充电。其中耳机的充电电流由KEY引脚的外置电阻R_{KEY}来设置,对应的公式为:

$$EICC = \frac{1}{R_{KEV}} * 5 * 10^4$$
 A

推荐的耳机充电电流在20~150mA。

LP7812集成机械按键短路保护,当KEY引脚被拉到超过2V以上电平时,耳机的充电电流被强制限制在150mA,以保护按键失效导致的无法充电的风险。

耳机满电EOC检测: 当左右耳机充电电流都已小于4mA时,LP7812识别为耳机满电。经过400ms 消抖时间后,LP7812开始发送满电码(具体发码见通信发码章节)给相应耳机。当数据发送完成以后,LP7812将自动关闭充电路径,并调整为弱上拉状态以识别下一次的耳机插入。

耳机充电欠压保护: LP7812集成耳机充电欠压保护功能。当电池电压低于3.3V, LP7812关闭耳机充电功能直到电压恢复到3.5V以上。

耳机短路检测: 当耳机正在充电时,左右任一耳机发生短路时,且持续时间超过200ms时,耳机充电将被强制关闭,同时所有LED将闪烁10秒。耳机短路时,LP7812进入打嗝状态直到短路异常解除,打嗝周期3s,3s以后LP7812将重新恢复给耳机充电。

耳机充电NTC管理

当NTC电路的温度在-10℃到60℃之外时,LP7812QVF关闭耳机充电功能直到温度恢复到正常。

霍尔和按键管理

霍尔输入:

当HALL引脚从高电平被拉低且持续时间超过3s(关盖)时, LP7812会同时往左右耳机发送两次关盖码(具体发码见通信发码章节)并启动耳机充电。当HALL引脚从低电平被拉高且持续超过30ms时(开盖),LP7812会同步往左右耳机发送两次开盖码(具体发码见通信发码章节)并同样为左右耳机启动充电。HALL开盖时,如果耳机充满,相应耳机将掉电并维持2μA弱上拉,但是LP7812不发送满电码。此时,发生耳机入仓,LP7812正常显示耳机插入并重新启动充电。如果开盖时,发生电池欠压,LP7812将发送欠压码,并关闭双耳充电功能,直到电池电压恢复。在电池电压恢复之前,不发码。

按键输入:

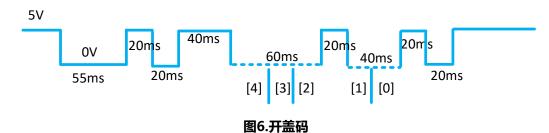
当按键引脚拉高超过30ms但是小于3s时,LED将显示电池电压3s。

当按键被拉高持续超过3秒时但是不足10s时, LP7812会发送3S短按键码(具体发码见通信发码章节)。

当按键被拉高超过10s时, LP7812会发送10S长按键码(具体发码见通信发码章节)。

短按建发码需要按键被释放以后才会进行,长按键发码即使按键超时也可正常发送。

Version: 01/09/2024 <u>www.lowpowersemi.com</u> email: <u>marketing@lowpowersemi.com</u>



通信发码

LP7812集成主动发码功能,在开盖,关盖,耳机满电,电池仓欠压以及按键发生时给左右耳机发码。

开盖发码:

当LP7812 识别到HALL 引脚发生开盖事件后,LP7812启动给左右耳机发送开盖码,连续发送两次。两次中间间隔 350ms。码型如图2所示,其中虚线代表电池电压信息,[4]为最高有效位(MSB),[0]为最低有效位(LSB)。电压信息请 参考表一。

表一、电量码表格

电量码[MSBLSB]	BAT 电压[V]	电量码[MSBLSB]	BAT 电压[V]
00000	2.90	10000	3.70
00001	2.95	10001	3.75
00010	3.00	10010	3.80
00011	3.05	10011	3.85
00100	3.10	10100	3.90
00101	3.15	10101	3.95
00110	3.20	10110	4.00
00111	3.25	10111	4.05
01000	3.30	11000	4.10
01001	3.35	11001	4.15
01010	3.40	11010	4.20
01011	3.45	11011	4.25
01100	3.50	11100	4.30
01101	3.55	11101	4.35
01110	3.60	11110	4.40
01111	3.65	11111	4.45

关盖发码:

Version: 01/09/2024

当LP7812 识别到HALL 引脚发生关盖事件后, LP7812启动给左右耳机发送关盖码, 连续发送两次。两次中间间隔 350ms。

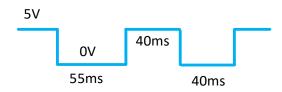


图7.关盖码

耳机满电或者电池欠压发码:

当LP7812 识别到左耳或者右耳满电时,LP7812给相应左耳或者右耳发送满电码。满电码中间同样集成电池仓BAT电压信息。在HALL处于开盖状态下,LP7812不发满电码。

当LP7812 检测到BAT引脚电压低于3.3V时,LP7812 立即启动给左耳和右耳同时发送欠压码。欠压码型与耳机满电码型一致。

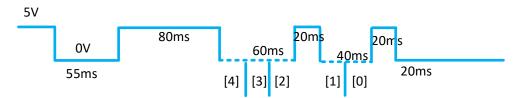


图8.耳机满电EOC或者仓电池欠压码

KEY 短按建发码:

当LP7812 识别到KEY引脚被持续拉低超过3s且KEY引脚被重新拉高以后,LP7812给左耳和右耳同时发送短按建码。

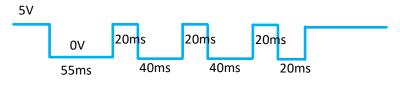
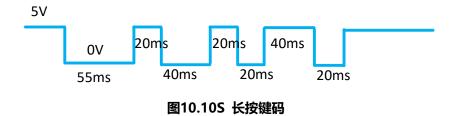



图9.3S 短按键码

KEY 长按建发码:

当LP7812 识别到KEY引脚被持续拉低超过10s时,LP7812给左耳和右耳同时发送长按建码。

LED 灯显

当发生以下事件时,LP7812进行LED显示:

- 1) 霍尔开盖/关盖: 电池电量显示3s后灭
- 2) 耳机入仓: 所有LED先灭0.5S,如未发生充电,则显示电池电量3s后灭;如正在充电,则LED显示完电量后继续显示当前充电状态。
- 3) 短按键(<3S): 电池电量显示3s后灭
- 4) 3S长按灯显: 所有LED常亮6s后灭
- 5) 电池仓充电: 持续显示电池电量
- 6) 异常报警事件(电池欠压或者耳机短路): 如果异常时,USB未插入,LP7812将以1Hz的频率闪烁10s后灭(全LED显示)。如果异常发生时,USB处于插入状态,则LP7812持续以1Hz频率闪烁直到异常解除。在异常事件中,上述1-5事件的均显示为全灯闪烁10s。按键可以强制退出异常状态,待按键结束以后,重新进入异常保护状态,并闪烁10s。

LP7812支持1~4灯显示,请按照图二~图四选择不同的LED配置。

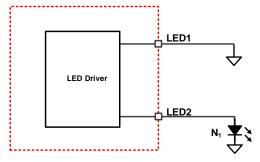


图 11、1LED 接线图

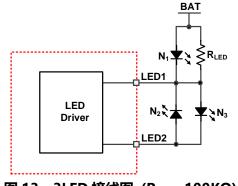


图 13、3LED 接线图 (R_{LED}=100KΩ)

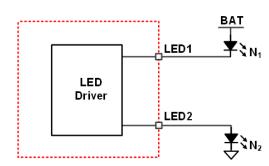


图 12、2LED 接线图

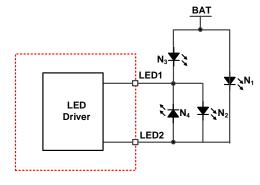


图 14、4LED 接线图

表二、 4LED 电量显示表格

电池电压		充印	目时		电池电压	放电时			
	N1	N2	N3	N4		N1	N2	N3	N4
EOC	常亮	常亮	常亮	常亮	>=3.9	亮3秒	亮3秒	亮3秒	亮3秒
4.1-EOC	常亮	常亮	常亮	1Hz闪烁	3.75-3.9	亮3秒	亮3秒	亮3秒	熄灭
4-4.1	常亮	常亮	1Hz闪烁	熄灭	3.6-3.75	亮3秒	亮3秒	熄灭	熄灭
3.8-4	常亮	1Hz闪烁	熄灭	熄灭	3.4-3.6	亮3秒	熄灭	熄灭	熄灭
3.8以下	1Hz闪烁	熄灭	熄灭	熄灭	3.4以下	1Hz闪烁 3秒	熄灭	熄灭	熄灭

表三. 3LED 电量显示表格

电池电压	充电时				电池电压	放电时			
	N1	N2	N3			N1	N2	N3	
EOC	常亮	常亮	常亮		>=3.9	亮3秒	亮3秒	亮3秒	
4-EOC	常亮	常亮	1Hz闪烁		3.75-3.9	亮3秒	亮3秒	熄灭	
3.8-4	常亮	1Hz闪烁	熄灭		3.6-3.75	亮3秒	熄灭	熄灭	
3.8以下	1Hz闪烁	熄灭	熄灭		3.6以下	1Hz闪烁 3秒	熄灭	熄灭	

表四、 2LED 电量显示表格

电池电压		充印	討	电池电压	放电时			
	N1	N2			N1	N2		
EOC	熄灭	常亮		>=3.6V	亮3秒	熄灭		
未EOC	熄灭	1Hz闪烁		3.6以下	1Hz闪烁 3秒	熄灭		

表五、 1LED 电量显示表格

电池电压	充电时				电池电压	放电时			
	N1					N1			
EOC	常亮				>=3.6V	亮3秒			
未EOC	1Hz闪烁				3.6以下	1Hz闪烁 3秒			

待机模式

当没有USB插入时,且左右耳都已充满时,LP7812将自动进入待机模式, 待机模式下,LP7812仅消耗7-μA静态电流。当发生以下事件时,LP7812马上退出待机模式: 1) 插入USB; 2) 耳机入仓并启动充电

异常保护及其解除

以下事件被定义为异常事件:

- 1) 电池欠压 (低于3.3V欠压保护, 高于3.5V, 欠压保护解除)
- 2) 任一耳机发生了短路。

异常状态下,耳机充电会关闭。所有灯效都是异常灯效(有USB时,持续闪烁,没有USB时闪烁一段时间后结束)。异常解除以后,LP7812自动恢复相应的灯显和控制。

过温保护

当LP7812的内部结温度超过150°C时,LP7812关闭所有功率路径。线性充电器、升压转换器和VOL/VOR都将禁用。 当温度恢复到130°C时,LP7812恢复正常功能。

email: marketing@lowpowersemi.com

17 / 24

应用信息

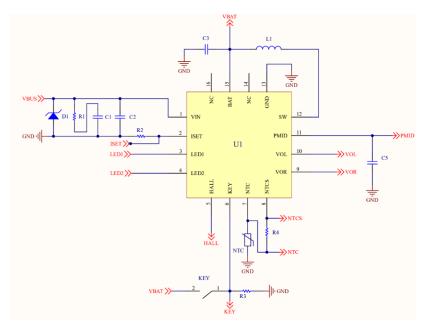


图 15. 典型应用原理图

一个典型的系统应用包含一颗LP7812主控芯片,一颗霍尔检测芯片,机械按键以及外围的RLC无源器件。

电感电容的配置:

LP7812的VIN端,BAT端,以及PMID端都需要外置稳压滤波电容。其中VIN端至少需要1uF, BAT以及PMID端至少需要10uF。针对VIN 端热插拔,建议在C₁上串联一个1Ω以降低VIN引脚尖峰。所有电容的选择以小封装的陶瓷电容为优先选择,选择时需要注意电容的耐压能力,尤其是VIN输入电容需要至少有25V的耐压能力。所有电容布局时,都需要尽量靠近芯片的引脚,以降低寄生对芯片噪声的干扰。LP7812兼容0.24uH-2.2uH电感。优先选择感量为1uH,DCR为30mΩ的电感,以降低电感纹波,提升系统效率。

充电电流设计:

LP7812可以通过外部电阻R2来调整充电电流,具体计算方式如下面表达式所示:

$$ICC = \frac{480A * \Omega}{R_2}$$

对于典型的480mA充电电流设计,可以选择 ±1%,1 kΩ的电阻。

耳机充电电流设计:

LP7812可以通过外部电阻R3来限制耳机充电电流,具体计算方式如下面表达式所示:

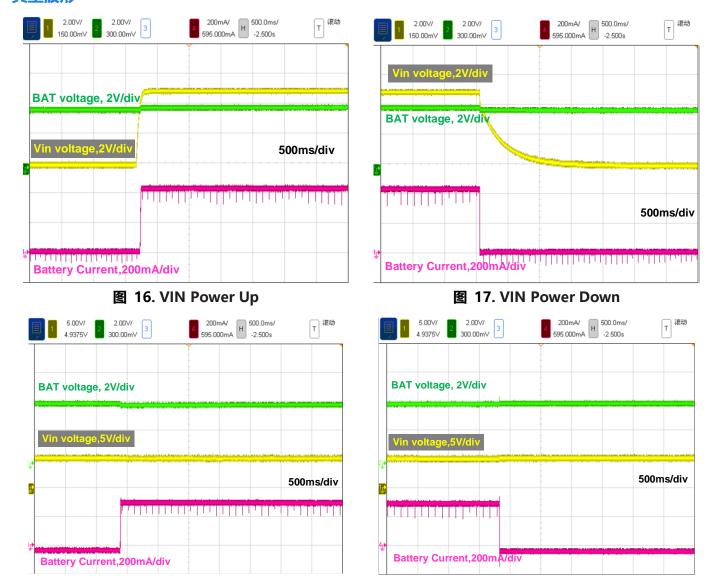
$$EICC = \frac{50000A * \Omega}{R_3}$$

对于典型的100mA充电电流设计,可以选择 ±1%,500kΩ的电阻。

NTC 设计

LP7812通过检测NTC引脚的电压来检测外部系统温度,NTC电阻建议使用β=3950的热敏电阻。R4与热敏电阻阻值需要完全匹配,对于典型值为10kΩ的热敏电阻,R4也请使用10kΩ。如果需要调整NTC的温控阈值,可以在热敏电阻上并联一个额外的电阻。

典型波形



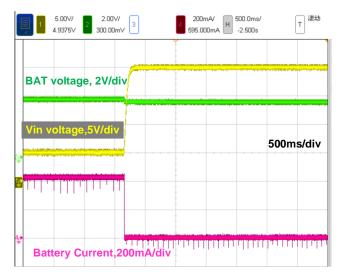

图 18. Battery Insert

图 19. Battery Removal

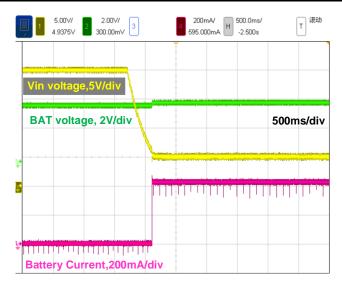


图 20. VIN OVP and recover

图 21. VIN OVP Release

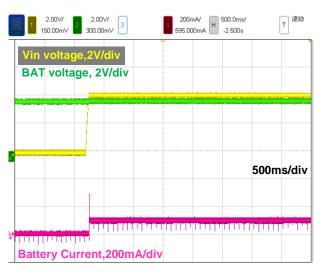


图 22. VIN Based DPM

图 23. Boost转换效率

PCB 布板指南

- 1. C2 C3 C5 必须尽量靠近芯片引脚和 GND 引脚.**尤其是 PMID 电容 C5,**需要靠近 PMID 和 GND 引脚放置,以约束高频噪声,。
- 2. 功率路径走线需要尽量宽,以降低线路损耗提升系统效率,如 BAT/PMID/VOL/VOR。
- 3. 左右耳引脚建议加不超过 10nF 的陶瓷电容,以滤除高频噪声。
- 4. 芯片的 thermal PAD 必须良好接地。

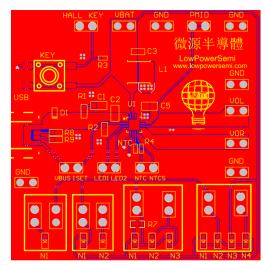
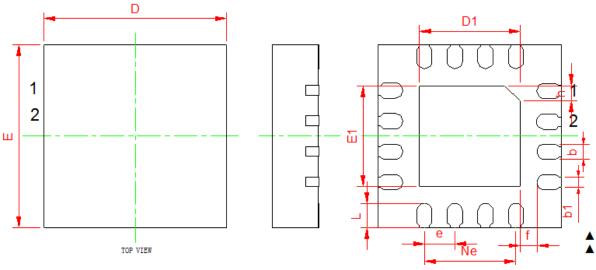
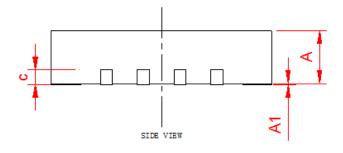


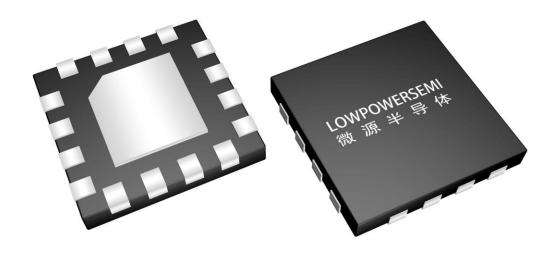
图 24. PCB 布板参考设计


email: marketing@lowpowersemi.com



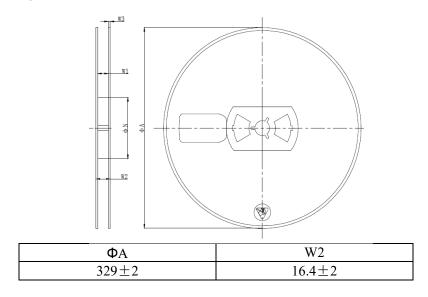
封装信息

3x3 QFN package

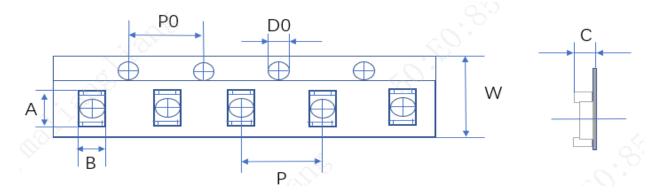


0)/1/10/01	MILLIMETER						
SYMBOL	MIN	NOM	MAX				
Α	0.700	0.750	0.800				
A1	0.000	0.020	0.050				
b	0.200	0.250	0.300				
b1	0.160REF						
С	0.180	0.210	0.240				
D	2.900	3.000	3.100				
Е	2.900	3.000	3.100				
D1	1.600	1.650	1.700				
E1	1.600	1.650	1.700				
е	0.500BSC						
Ne	1.500BSC						
f	0.225	0.275	0.325				
h	0.200	0.250	0.300				
L	0.350	0.400	0.450				

封装视图

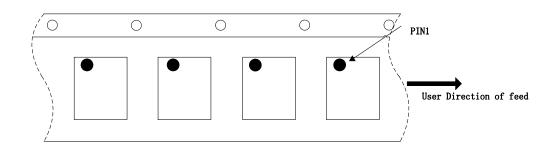


封装视图仅为QFN封装示意图,具体封装尺寸请参考封装信息。



编带信息

卷盘尺寸(单位: mm)



编带尺寸 (单位:mm)

口袋:	宽度A	口袋·	长度B	编带空中	心间距P0	IC中心间距P		孔径D0		编带宽度W		编带厚度C	
尺寸	公差	尺寸	公差	尺寸	公差	尺寸	公差	尺寸	公差	尺寸	公差	尺寸	公差
3.40	±0.3	3.40	±0.3	4.00	±0.1	8.00	±0.1	1.55	±0.3	12.00	±0.3	1.10	±0.15

引脚1和编带方向:

版本历史

版本	日期	修改项描述
Rev 1p0	10/5/2022	初版
Rev 1p1	3/5/2023	1. 增加湿敏等级及丝印2. 应用信息更新3. 更正拼写错误
Rev 1p2	5/5/2023	1. 修正部分书写错误
Rev 1p3	01/09/2024	 修改 LED 灯显描述 增加封装视图 增加编带信息